The Integration of LED Lighting & Advanced Lighting Controls

Peter Schwartz January 7, 2015

Lighting Energy Use By Building Sector

- Much effort spent transforming outdoor (HID) lighting to LED
- But most of energysaving opportunity is in interior fluorescent lighting

Source: Navigant Consulting, "U.S. Lighting Market Characterization", 2010

What If ALL Commercial Lighting Were changed to LED?

Estimated Annual U.S. Savings Potential (100% LED penetration): 373 TWh

Shifting Technology Trends in Lighting

Current Practice	Future Trend	Rationale for Shift
Re-Lighting (New Design)	Preserve fixture spacing	Minimize labor installation costs
Fluorescent lighting (static)	Controllable LED Lighting	Improved dimming range and performance with LEDs
Low-voltage control cabling	Wireless connectivity: - ZigBee, WiFi, Zwave, etc	Minimize re-wiring costs
Area-based sensors for detecting occupancy and daylight	Integrated sensor package for each luminaire	Reducing commissioning costs and set-up time
Separate wireless controller and driver/ballast	Wireless connectivity integrated into driver/ballast	Lower capital and labor costs

Commercial Building Partnership Lighting Pilot Sites

Site	Agency	Location	Floor Area (ft ²)	Pre-Retrofit Metered Area (ft ²)	Post-Retrofit Metered Area (ft ²)
Chet Holifield FB (2nd Fl)	Homeland Security	Laguna Niguel, CA	46,500	11,808	14,268
Cottage Way FB (2nd Fl)	Bureau of Reclamation	Sacramento, CA	21,000	20,035	20,035
Lloyd George FB & Court (2nd Fl)	US Marshals	Las Vegas, NV	17,500		
Lloyd George FB & Court (5th Fl)	US Attorneys	Las Vegas, NV	15,500		
Matsui FB (3rd Fl)	Bankruptcy Courts	Sacramento, CA	13,500		
Philip Burton FB (10th Fl)	Antitrust	San Francisco, CA	23,500		
Ron Dellums FB (8th Fl)	Coast Guard	Oakland, CA	18,500	13,746	11,920
Ron Dellums FB (13th Fl)	Veteran's Association	Oakland, CA	15,000	5,725	3,963
Ron Dellums FB (14th Fl)	Internal Revenue Service	Oakland, CA	8,000	7,885	7,225
Roybal FB (18th Fl)	Drug Enforcement Agency	Los Angeles, CA	25,500	24,641	22,199
			204,500		

Assuming leveraging ~ 15:1, > 3 million ft2 of office space is being measured

Determining a Building's Energy Footprint

- Energy Use Intensity (EUI) is a measure of energy density for installed lighting:
 - Is used in most building energy simulation programs
 - Units: Kilowatt-hrs per square foot per year (kWh/ft²/year)
 - In Britain, LENI (Lighting Energy Numerical Index) uses kWh/m²/year instead

Measured Lighting Energy Use at 12 Demonstration Sites Before & After Lighting Controls Installation

Annual Lighting Energy Use Intensity (kWh/square foot/year)

Energy Savings at 10 GSA Demonstration Sites

Energy Savings (kWh/sf/yr)

Shifting Technology Trends in Lighting

Current Practice	Future Trend	Rationale for Shift
Re-Lighting (New Design)	Preserved Fixture Spacing	Minimize labor installation costs
Fluorescent lighting (static)	Controllable LED Lighting	Improved dimming range and performance with LEDs
Low-voltage control cabling	Wireless connectivity: - ZigBee, WiFi, Zwave, etc.	Minimize re-wiring costs
Area-based sensors for detecting occupancy and daylight	Integrated sensor package for each Iuminaire	Reducing commissioning costs and set-up time
Separate wireless controller and driver/ballast	Wireless connectivity integrated into driver/ballast	Lower capital and labor costs

Fluorescent & LED Dimming Compared

Fluorescent

vo Light

LED

Fluorescent Lighting Efficacy Changes with Dimming

Relative Efficacy

LED Lighting Efficacy Changes with Dimming

Relative Efficacies of LED & Fluorescent Compared

Fluorescent

LED

Shifting Technology Trends in Lighting

Current Practice	Future Trend	Rationale for Shift
Re-Lighting (New Design)	Preserved Fixture Spacing	Minimize labor installation costs
Fluorescent lighting (static)	Controllable LED Lighting	Improved dimming range and performance with LEDs
Low-voltage control cabling	Wireless connectivity: - ZigBee, WiFi, Zwave, etc	Minimize re-wiring costs
Area-based sensors for detecting occupancy and daylight	Integrated sensor package for each Iuminaire	Reducing commissioning costs and set-up time
Separate wireless controller and driver/ballast	Wireless connectivity integrated into driver/ballast	Lower capital and labor costs

Demonstration Site Characteristics & Study Schedules

Building	Test Site Area (ft ²)	Space Types	LED Luminaire	Wireless Controls	Original Lighting
Goodfellow Bldg St. Louis Ml	6,100	78% Open Office 22% Private Office/Break	X		84 2x4 3-lamp parabolic
Appraiser's Office Bldg San Francisco CA	6,800	74% Open Office 6% Private Offices 20% Other	X	X	84 2x4 3-lamp parabolic
Moss Bldg Sacramento CA	31,400	65% Open Office 35% Private Offices, other		x	~320 mixed 2x4,2x2&1x4

Goodfellow Building: Fluorescent to LED without added controls

78% Open Office 22% Private Office/Break

Goodfellow Building: Power & Energy Savings

Lighting Power Density (W/ft²)

Energy Use (kWh/ft²)

Goodfellow Building: Changes in Light Levels

LED retrofits maintained acceptable light levels P-100 Acceptable light levels <u>></u> 323 lux

Light levels measured using spectroradiometer located at key workstation locations

Changes in Light Level & Workplane Efficacy

Averaged Light Level (lux)

Corrected Light Level (lux)

Efficacy (corrected) (I/w)

Measured Changes in Spectral Power Distribution & CRI

	Ra	R9
Pre-retrofit	80	-2
Post-retrofit	93	63

Fluorescent CRI

LED CRI

Occupant Satisfaction Survey

Though not statistically significant, LED luminaires appeared to provide greater occupant satisfaction

Appraiser's Building: LED Luminaires with Wireless Controls

100

Estimating How Much is Saved By Each Additional Control Strategy

Hour of Day

Fluorescent to Controllable LED

Simulating the Lighting Controls Savings if the Lighting Were Not Changed to LED

Watts/ft²

Hour of Day

Fluorescent to Controllable Fluorescent

Shifting Technology Trends in Lighting

Current Practice	Future Trend	Rationale for Shift
Re-Lighting (New Design)	Preserved Fixture Spacing	Minimize labor installation costs
Fluorescent lighting (static)	Controllable LED Lighting	Improved dimming range and performance with LEDs
Low-voltage control cabling	Wireless connectivity: - ZigBee, WiFi, Zwave, etc	Minimize re-wiring costs
Area-based sensors for detecting occupancy and daylight	Integrated sensor package for each luminaire	Reducing commissioning costs and set-up time
Separate wireless controller and driver/ballast	Wireless connectivity integrated into driver/ballast	Lower capital and labor costs

Examples of Integrated Sensors for Individual Luminaires

LED Fixtures with Integrated Controls

- Higher efficacy: More lumens / watt, reducing lighting power and improving lighting service
- Tuning: Maximum fixture power set to default
 "medium" level (88% of maximum rated output)

Grouping and occupancy sensing:

- Fixtures organized in large zones (groups) that operate in concert (via on-board wireless communication)
- When any fixture in group senses occupants, all fixtures in group turn on to "background" level
- Fixtures above occupants brighten to "medium" level
- Daylight harvesting: reduces electric light levels based on available daylight

Deployed in Two Federal Buildings

• Metcalfe LED fixture grouping

- Study Area ~ 19,750 ft²
- 270 2'x 4' 3 lamp parabolic troffers
- Large open office area with 9 private offices
- 2 conference rooms, 2 break rooms reception, storage areas, copy rooms, etc.

• Summit LED fixture grouping

- Total Area ~ 12,900 ft²
- 150 recessed 2'x4' 2 lamp troffers
- Open office areas, 2 private offices, 2 conference rooms, 1 copy room, 1 break room

Our Measurement Suite

- Measure lighting power and energy usage
 - Lighting power density (LPD), W/ft²
 - Energy use intensity (EUI), kWh/ft²/year
- Measure light levels and characteristics
 - Illuminance (foot-candles)
 - Color rendering index (CRI)
 - Spectral power distribution (SPD)
 - Color Temperature (CCT)
- Determine occupant satisfaction through administration of surveys

Green Proving Ground

- Enclosed private office
- Cubicles with partitions above standing ave level
- () Other (Please specify)

What type of computer screen do you have

() Laptop () Flat Panel Screen

() Other (please specify)

Which direction do you face most of the time

Away from the window

Does not apply

Which primary direction does your window face?

() North () East

() West

() South

() Do not know/Does not apply

Lighting Levels/Illuminance

Before & After Lighting (Metcalfe Building)

Note the many randomly failed lamps before the new lighting was installed

Before & After Lighting (Summit Building)

	Metcalfe W/ft ²	Metcalfe savings	Summit W/ft²	Summit savings	Measured LPD at Metcalfe
Pre-retrofit	1.09	<	0.66		(0.71) due to
Post-retrofit (full power)	0.59	46%	0.52	21%	
Post-retrofit (tuned, medium power)	0.50	54%	0.44	33%	

*Total fixture counts remained nearly the same at each location

Preliminary Energy Results: Metcalfe

- Below average pre-retrofit energy consumption
 - Measured baseline EUI: 2.57 kWh/ft²/yr
 - 'Design' baseline EUI: 4.03 kWh/ft²/yr (with all fluorescent lamps working)
- Very low post-retrofit energy consumption
 - Post-retrofit EUI: 0.98 kWh/ft²/yr
 - 62% savings, and 76% relative to design

Preliminary Energy Results: Summit

- Low pre-retrofit energy consumption
 - Measured baseline EUI: 1.84 kWh/ft²/yr
- Very low post-retrofit energy consumption
 - Post-retrofit EUI: 1.09 kWh/ft²/yr
 - 41% savings

Preliminary Energy Savings Results

Before and After Light Levels at Both Sites

Metcalfe

Summit

Stage	CRI	R9
Pre-retrofit	77	-14
Post-retrofit	83	17

Stage	CRI	R9
Pre-retrofit	81	2.8
Post-retrofit	83	14

Measured Changes in Color Quality

- Color temperature and spectral power distribution results similar at both locations
 - CCT Pre ~3800K
 - CCT Post ~3900K

Occupant Satisfaction Survey: Before and After

Metcalfe

Summit

Occupant Satisfaction Survey: Before and After

Metcalfe

Summit

Measured Improvements of Workplane Efficacy (I/w)

Application Efficacy (lumens/watt)

Application Efficacy (lumens/watt)

Shifting Technology Trends in Lighting

Current Practice	Future Trend	Rationale for Shift
Re-Lighting (New Design)	Preserved Fixture Spacing	Minimize labor installation costs
Fluorescent lighting (static)	Controllable LED Lighting	Improved dimming range and performance with LEDs
Low-voltage control cabling	Wireless connectivity: - ZigBee, WiFi, Zwave, etc	Minimize re-wiring costs
Area-based sensors for detecting occupancy and daylight	Integrated sensor package for each Iuminaire	Reducing commissioning costs and set-up time
Separate wireless controller and driver/ballast	Wireless connectivity integrated into driver/ballast	Lower capital and labor costs

LED driver with snap-in communications package

Electricity Costs for US Commercial Customers

Total Commercial Customers: 17.6 Million

Paybacks for Retrofit & New Construction (or Replacement at End-of-Useful Life)

Summary Points for Lighting Renovation

- Preserve fixture spacing to reduce first costs
- LEDs are easier & cheaper to control than fluorescent lighting
- Use wireless controls judiciously to avoid unnecessary rewiring in the ceiling
- Luminaires that incorporate integrated sensors avoid many of the commissioning issues with area-based sensors
- Identify all code compliance issues early in the design process to avoid unexpected expenses that reduce cost-effectiveness

Summary

- LEDs with wireless controls is clear winner for new construction or major renovation
- For retrofit applications, today's solutions are too expensive by factor of 2X to 3X
 - Labor cost variable and uncertain
- Need fluorescent-based controls solutions (retrofit kits) that cost under \$2/ft²

Acknowledgements

This work was supported by U.S. General Service Administration's Green Proving Ground Program, by U.S. Department of Energy's Federal Energy Management Program & by U.S. DOE's Commercial Building Partnership Program

> Contact: PMSchwartz@lbl.gov

