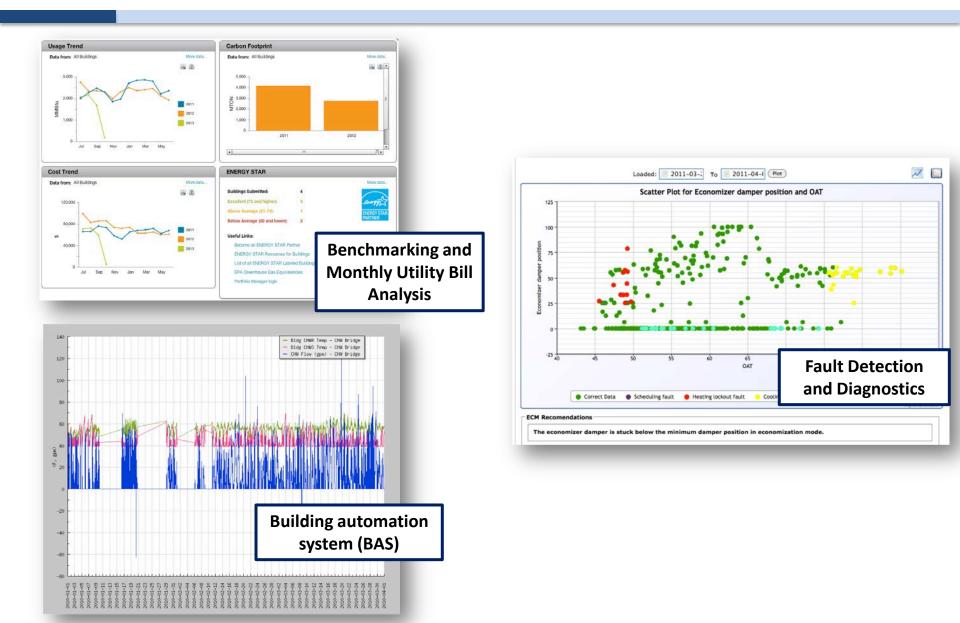
# Energy Management and Information Systems (EMIS)

## January 8, 2015

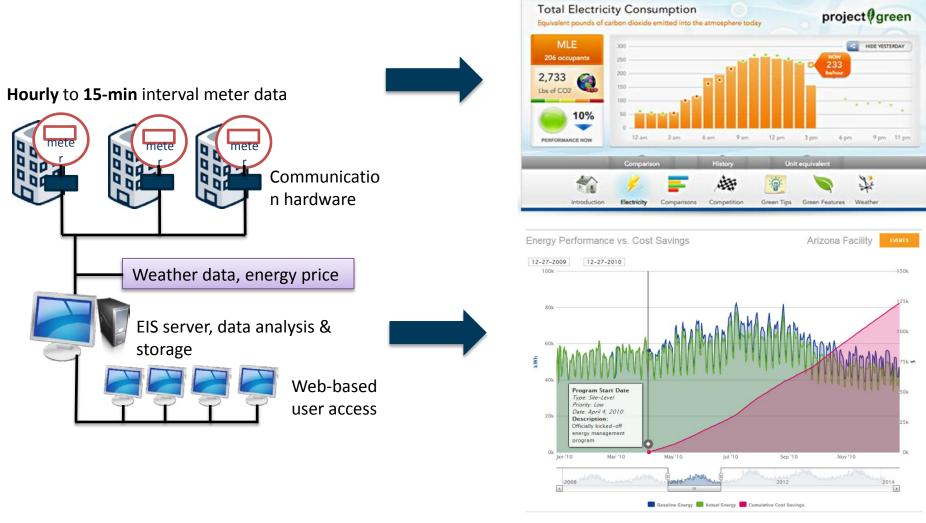
Jessica Granderson

Deputy Head, Building Technology and Urban Systems Department




# Outline

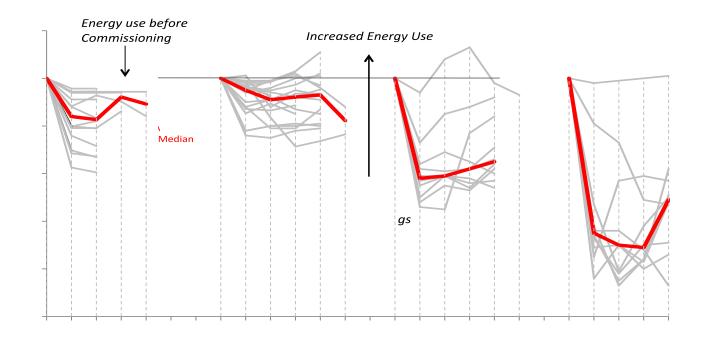
- Definitions, motivation, LBNL work in EMIS
- Common questions about EMIS use, and associated LBNL resources
- Questions, discussion


## **EMIS Comprise a Family of Technologies**



# **EMIS Examples**




# **Energy Information Systems (EIS)**



Images: Lucid (top); Sensei (bottom)

# **Motivating Context for EMIS**

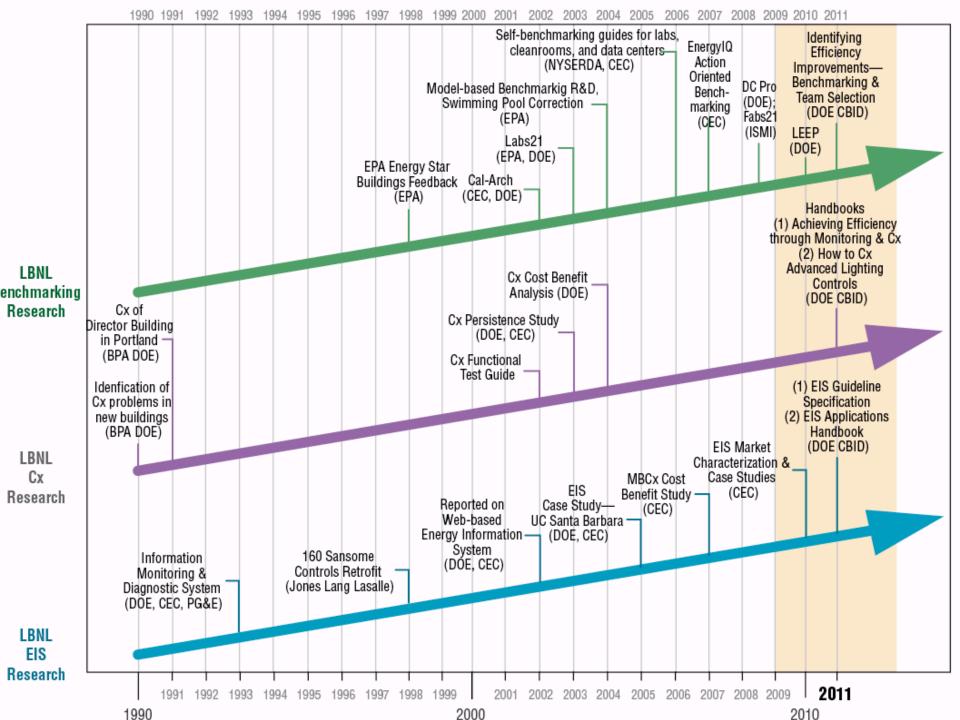
- Utility bills alone are insufficient to manage building energy use
- Building performance is not typically monitored and tracked
- Enormous savings are missed, efficiency is not maintained over time



# What is Compelling About EMIS?

- Continuous visualization and analysis of interval meter data enables
  - Site energy savings up to 20% through *operational* measures
  - Persistence in efficient performance
- EMIS tools are beginning to offer automated measurement and verification capability
- The same technology that drives the savings can be used to verify the savings

# LBNL Work in EMIS


**Goals and Objectives** 

• Increase adoption and capabilities of information systems for monitoring, commissioning, diagnostics and benchmarking

Methods

- Market characterization and best practice uses of existing tools, processes
- Technology enhancement and development of new tools
- Technology cost/benefit, effectiveness assessments
- Design and dissemination of guides, specifications, handbooks





# Common Questions About EMIS Use, and Associated LBNL Resources

# 1. How Do I Distinguish One EMIS Offering From Another?

- Fault detection and diagnostics, energy analytics, energy management system, optimization system
- Vendor websites look the same, many claim savings of 20%, features sound the same

- Real time performance reports
- Trend analysis
- Carbon footprints
- Automated alerting
- Tailored information displays
- Configurable events/alarms

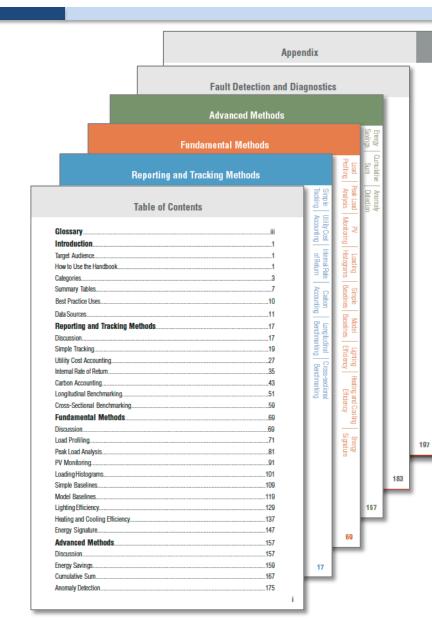
- KPI reporting
- Load prediction
- Baselining
- Whole-bldg anomaly detection
- ECM identification
- Dashboard views
- x-y plotting
- Highly configurable
- •Eminently extensible

# EMIS Terminology/Characterization Framework

|                                                           |                                                                                                                                  | Tools with a Whole-building I                                                                                                                                          | Energy Focus                                                                                                                                                                            | Tools wit                                                                                                                                        | th a System-level F                                                                                           | ocus                                                                                                                       |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Technology<br>attributes                                  | Benchmarking<br>and Monthly<br>Utility Bill<br>Analysis                                                                          | Energy Information<br>Systems                                                                                                                                          | Advanced Energy Information<br>Systems                                                                                                                                                  | Building Automation<br>Systems                                                                                                                   | Fault Detection<br>and Diagnostic<br>Systems                                                                  | Automated<br>System<br>Optimization                                                                                        |
| Typical Data<br>Scope                                     | Whole-building                                                                                                                   | Whole building<br>May include: submetering                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                  | Systems, components, BAS trends<br>May include: whole-building or<br>system-level metering                    |                                                                                                                            |
| Typical Data<br>Interval                                  | Monthly                                                                                                                          | Hourly to                                                                                                                                                              | o 15-minute                                                                                                                                                                             | 15-minute and less                                                                                                                               |                                                                                                               |                                                                                                                            |
| Frequency of<br>use                                       | Monthly,<br>annually                                                                                                             |                                                                                                                                                                        | Daily, weekly, monthly                                                                                                                                                                  | Weekly, monthly                                                                                                                                  |                                                                                                               |                                                                                                                            |
| Primary<br>Applications,<br>Principal<br>design<br>intent | Utility bill<br>reconciliation,<br>energy use and<br>cost tracking;<br>peer-to-peer<br>building<br>comparisons of<br>energy use. | Whole-building or portfolio<br>energy tracking, and <u>data</u><br><u>visualization</u> to identify<br>opportunities to improve<br>building operational<br>efficiency. | Whole-building or portfolio<br>energy tracking, and<br><u>automated interval data</u><br><u>analysis</u> to identify<br>opportunities to improve<br>building operational<br>efficiency. | Control of indoor<br>temperature, light,<br>and humidity<br>setpoints based on<br>building schedule;<br>alarming of out-of-<br>range operations. | Automated<br>identification of<br>faults,<br>sometimes with<br>associated<br>causes, usually<br>HVAC focused. | Automated<br>modification of<br>control<br>parameters to<br>optimize<br>efficiency, energy<br>use, and/or<br>energy costs. |

Other attributes include "AKA" names used in the industry, representative examples of commercial offerings<sup>12</sup>

# 2. Now That I Have Data, What Do I Do With It?


### **2011 Energy Information Handbook**

- Purpose: instructional resource detailing energy and performance monitoring methods for commercial buildings
- Audience those with little experience in the use of data
  - Secondary: software developers and service providers, control companies
- Relevant technologies: spectrum of performance monitoring tools

## ENERGY INFORMATION HANDBOOK Applications for Energy-Efficient Building Operations



# Handbook Organization



Begins with TOC, Glossary, and Introduction chapter

Primary content comprises three chapters of methods, each indicated by color

Last chapters are Fault Detection and Diagnostics, and an Appendix with supplementary material

# List and Grouping of Analysis Methods

| ł | Reporting and Tracking Methods |
|---|--------------------------------|
|   | Simple Tracking                |
|   | Utility Cost Accounting        |

Internal Rate of Return

Carbon Accounting

Longitudinal Benchmarking

Cross-Sectional Benchmarking

| -  | in all the |      |     |       | 100 | 1000   | 1.1 |    |  |
|----|------------|------|-----|-------|-----|--------|-----|----|--|
|    | 111        | 611  | 111 | NE    |     | 11 ( ) | 16  | 16 |  |
| Fu |            | E 11 | 117 | ELC ( |     | 11 5   |     |    |  |
|    |            |      |     |       |     |        |     |    |  |
|    |            |      |     |       |     |        |     |    |  |

Load Profiling

Peak Load Analysis

PV Monitoring

Loading Histograms

Simple Baselines

Model Baselines

Lighting Efficiency

Heating and Cooling Efficiency

Energy Signature

**Advanced Methods** 

Energy Savings

Cumulative Sum

Anomaly Detection

18 analysis methods grouped into three chapters based on shared characteristics

Organized from simpler to more technically complex



# **Summary Tables**

## At-a-glance summary tables to help reader identify useful methods given data availability, systems of interest, level of expertise

#### Minimum Data Requirements

| Analysis Methods               |   | tility   | Interval<br>Meter |                | Submeter |                 | Other*           |   |
|--------------------------------|---|----------|-------------------|----------------|----------|-----------------|------------------|---|
|                                |   | Electric | WB<br>Gas         | WB<br>Electric |          | Cooling<br>Load | Lighting<br>Load |   |
| Simple Tracking                |   |          |                   |                |          |                 |                  |   |
| Utility Cost Accounting        |   |          |                   |                |          |                 |                  |   |
| Internal Rate of Return        |   |          |                   |                |          |                 |                  | • |
| Carbon Accounting              |   |          |                   |                |          |                 |                  |   |
| Longitudinal Benchmarking      |   |          |                   |                |          |                 |                  | • |
| Cross-Sectional Benchmarking   |   |          |                   |                |          |                 |                  | • |
| Loading Profiling              |   |          |                   |                |          |                 |                  |   |
| Peak Load Analysis             |   |          |                   | ٠              |          |                 |                  |   |
| PV Monitoring                  |   |          |                   |                |          |                 |                  | • |
| Loading Histograms             |   |          |                   |                |          |                 |                  |   |
| Simple Baselines               |   |          |                   |                |          |                 |                  |   |
| Model Baselines                |   |          |                   |                |          |                 |                  |   |
| Lighting Efficiency            |   |          |                   |                |          |                 |                  |   |
| Heating and Cooling Efficiency |   |          |                   |                |          |                 |                  |   |
| Energy Signature               |   |          |                   |                |          |                 |                  | • |
| Energy Savings                 |   |          |                   |                |          |                 |                  | ٠ |
| Cumulative Sum                 | • |          |                   |                |          |                 |                  |   |
| Anomaly Detection              |   |          |                   |                |          |                 |                  |   |

#### Applicable Building Systems

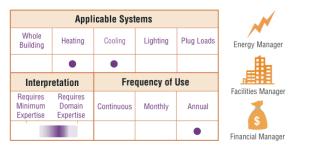
| Analysis Methods               | Í                 | 0       | 業       |          | 0             |
|--------------------------------|-------------------|---------|---------|----------|---------------|
| -                              | Whole<br>Building | Heating | Cooling | Lighting | Plug<br>Loads |
| Simple Tracking                | •                 |         | •       |          |               |
| Utility Cost Accounting        | •                 |         | •       |          | •             |
| Internal Rate of Return        | •                 |         | •       |          | •             |
| Carbon Accounting              |                   |         |         |          |               |
| Longitudinal Benchmarking      | •                 |         | •       |          | •             |
| Cross-Sectional Benchmarking   | •                 | •       | •       | •        | •             |
| Loading Profiling              |                   |         | •       |          | •             |
| Peak Load Analysis             |                   |         |         |          |               |
| PV Monitoring*                 | •                 |         |         |          |               |
| Loading Histograms             |                   |         |         |          |               |
| Simple Baselines               |                   |         |         |          | •             |
| Model Baselines                |                   |         |         |          |               |
| Lighting Efficiency            |                   |         |         |          |               |
| Heating and Cooling Efficiency |                   | •       | ٠       |          |               |
| Energy Signature               |                   |         |         |          |               |
| Energy Savings                 |                   |         |         |          |               |
| Cumulative Sum                 | •                 | •       | ٠       | •        | •             |
| Anomaly Detection              | •                 | •       | ٠       | •        | •             |

#### Interpretation of Method Output

| Analysis Methods               | Requires<br>Minimal<br>Expertise | Requires<br>Advanced<br>Expertise |
|--------------------------------|----------------------------------|-----------------------------------|
| Simple Tracking                |                                  |                                   |
| Utility Cost Accounting        |                                  |                                   |
| Internal Rate of Return        |                                  |                                   |
| Carbon Accounting              |                                  |                                   |
| Longitudinal Benchmarking      |                                  |                                   |
| Cross-Sectional Benchmarking   |                                  |                                   |
| Loading Profiling              |                                  |                                   |
| Peak Load Analysis             |                                  |                                   |
| PV Monitoring                  |                                  |                                   |
| Loading Histograms             |                                  |                                   |
| Simple Baselines               |                                  |                                   |
| Model Baselines                |                                  |                                   |
| Lighting Efficiency            |                                  |                                   |
| Heating and Cooling Efficiency |                                  |                                   |
| Energy Signature               |                                  |                                   |
| Energy Savings                 |                                  |                                   |
| Cumulative Sum                 |                                  |                                   |
| Anomaly Detection              |                                  |                                   |

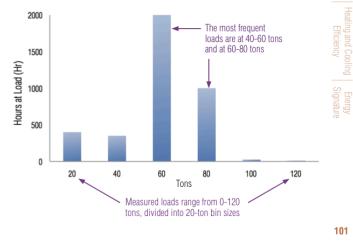
# Sample Method, Summary Page

#### Fundamental Methods


#### Loading Histograms

Monitoring

| Loading | Histograms


#### Purpose

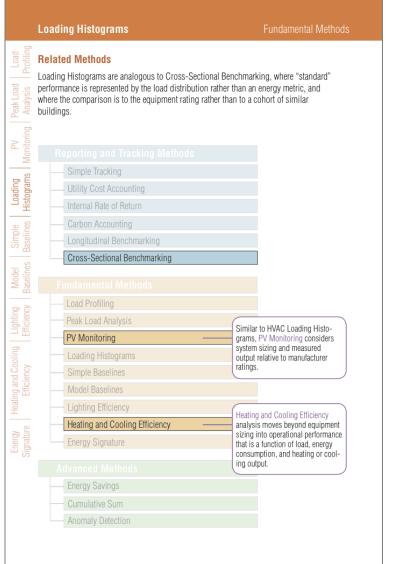
**Loading histograms** are used to evaluate whether HVAC equipment is properly sized and staged, given the operated condition of the building. They are useful in identifying potential retrofit solutions and optimizing control of multi-unit staging.



#### **Technical Approach**

Group system load measurements into "bins," or ranges, and count the number of hours at which the system operated within each range. Construct a bar chart with load plotted on the x-axis and the number of hours at each load plotted on the y-axis. Then compare the distribution of operational hours at each load to the manufacturer load ratings and equipment staging sequences.



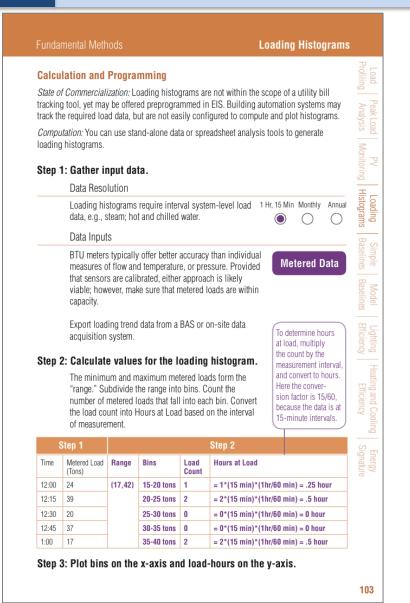

# Each method begins with a summary page that includes:

Purpose and use, including a summary table

Icons indicating the target audience

Technical approach and a representative image

# Sample Method, Related Methods




Following the summary page, related methods are presented:

Shading and highlighting to indicate relationships with other methods in handbook

Description of the relationship in short paragraph and call outs

# Sample Method, Calculation and programming

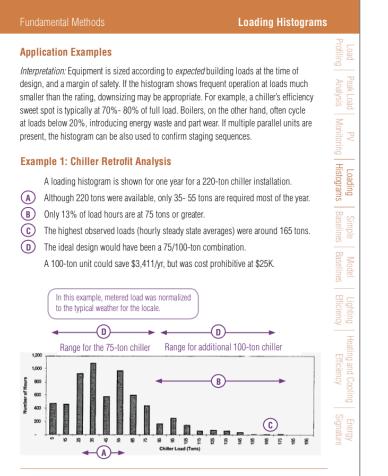


# A page dedicated to calculation and programming:

State of commercialization

**Required data** 

# Step-by-step instructional numeric example


19

# Sample Method, Notes and Sketches

| Loading Histograms                           | Fundamental Methods |
|----------------------------------------------|---------------------|
| Notes                                        |                     |
| Analysis                                     |                     |
| Monitoring                                   |                     |
| Histograms                                   |                     |
| Baselines                                    |                     |
| Baselines                                    |                     |
| Sketches                                     |                     |
| Koureioutiga<br>Koureioutiga<br>Koureioutiga |                     |
| Signature                                    |                     |
|                                              |                     |
| 14                                           |                     |

Following computation, a page for notes and sketches

# Sample Method, Application Examples



Source: Piette et al, Model-based chiller energy tracking for performance assurance at a university building. LBNL#40781, 1997. Wherever possible, real-world examples of how method can be applied:

#### Description of how method output is interpreted, rules of thumb

Heavily annotated to support reader interpret data, draw conclusions

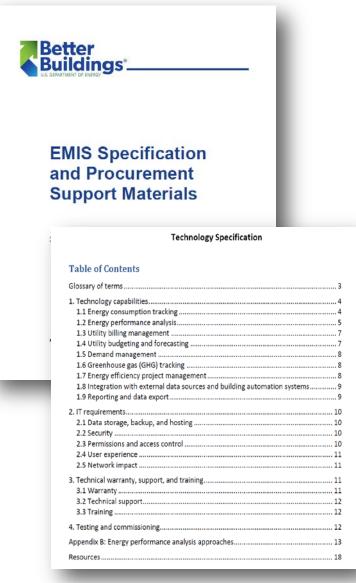
3-5 examples per method, illustrating different investigations/questions and energy saving benefits of use

# 3. What References Might Answer My Questions About Monitoring and Analysis?

## 'Cliff's Notes' synthesis of ~40 existing guides, handbooks, case studies, specifications



# 4. How Do I Plan for And Implement an EMIS?


# 6 step process to plan, select a EMIS

Se

#### **Summary of EMIS Tools**

| et organizational goals                    | EMIS tool                             | s Data<br>scope                   | Key uses                                                                                                                  | Costs       | Energy Savings                                                         |
|--------------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|
| Establish roles & responsibilities         | Benchmark<br>g& utility b<br>analysis | Monthly                           | <ul><li>Peer-to peer comparison</li><li>Utility bill analysis</li></ul>                                                   | Free -\$    | 2.4% (median)<br>(whole building,<br>enabled savings)                  |
| Understand<br>organizational<br>conditions | EIS &<br>Advanced E                   | Hourly or<br>15-min<br>meter data | <ul> <li>Energy dashboard/kiosk</li> <li>Benchmarking</li> <li>Energy anomalies alert</li> <li>Demand response</li> </ul> | \$\$-\$\$\$ | 8% (median), 0-<br>33% (range)<br>(whole building,<br>enabled savings) |
| Define activities to meet goals            |                                       |                                   | <ul> <li>Auto M&amp;V</li> <li>Building system control</li> </ul>                                                         | 6666        | 10-15%                                                                 |
| Identify required                          | BAS                                   | 15-min or<br>less<br>interval     | <ul> <li>Manually troubleshooting<br/>by investigating trends</li> </ul>                                                  | \$\$\$\$    | (whole building)                                                       |
| sensing, metering                          | FDD                                   |                                   | <ul> <li>Auto system or component<br/>fault notification</li> </ul>                                                       | \$\$\$      | 2-11%(whole<br>building, potential                                     |
|                                            |                                       | data                              | <ul> <li>Fault causes identification</li> </ul>                                                                           |             | savings)                                                               |
| Select a tool(s)                           | ASO                                   |                                   | <ul> <li>Optimal HVAC settings<br/>prediction</li> </ul>                                                                  | \$\$\$      | -                                                                      |
|                                            |                                       |                                   |                                                                                                                           |             | 23                                                                     |

# **EMIS Procurement Support Materials**



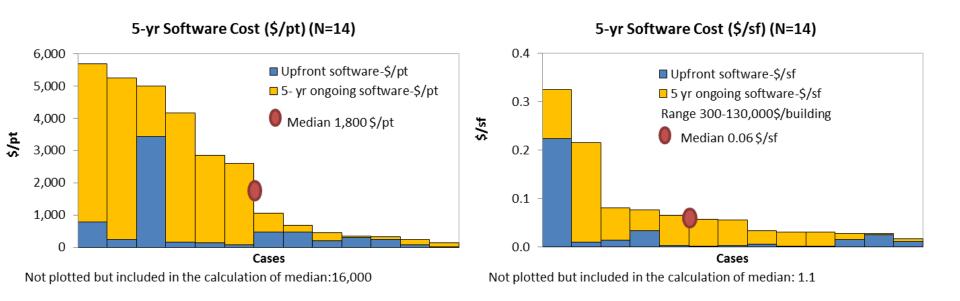
### Request for Proposal

 Template to create a projectspecific RFP for vendors

## Technology Specification

 Template of technology features that can be specified according to org. specific needs

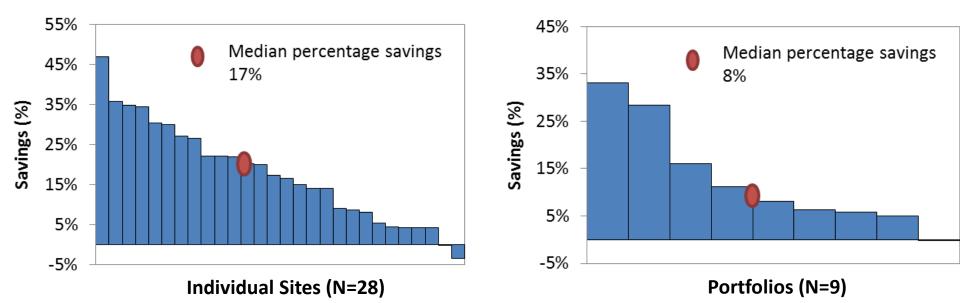
### Evaluation Criteria


 Several criteria to help choose between multiple competing proposals that satisfy the spec. Synthesized case investigations to identify asimplemented costs, over-time energy savings, best practices, factors associated with larger savings

26 participating organizations, 260M sf install base, 17 unique EIS



# EIS Costs Reported by Study Participants

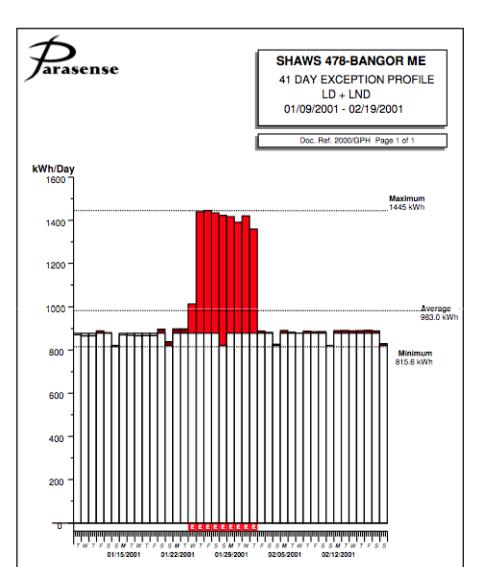

### Median 5-yr cost of ownership = \$150K, 1800\$/pt, .06\$/sf



- Note the wide distribution of costs paid by study participants
- Some economies of scale with size of implementation

# Savings: Year Prior to EIS Installation vs. Most Recent Year of Data

- Median building and portfolio savings of 17% and 8% would not be possible without use of the EIS
  - Median building and portfolio utility savings of \$56K, and \$1.3M
- Key benefits
  - **Operational efficiency**, utility validation and payment, data for other analyses



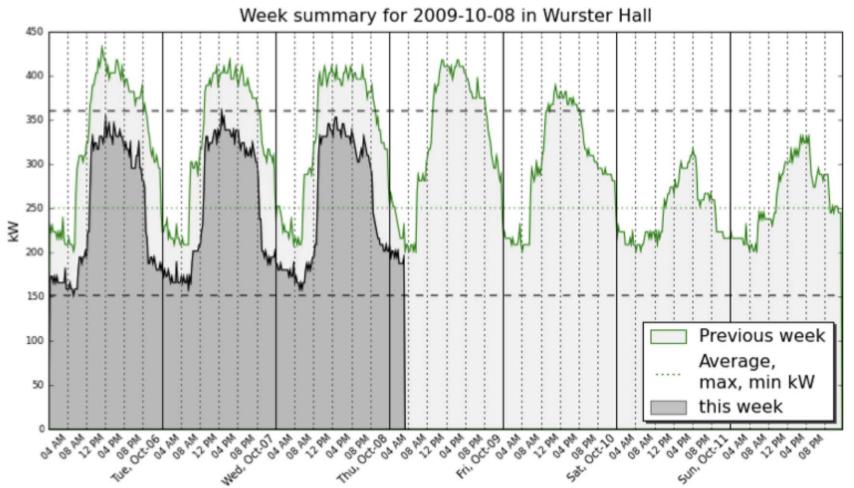

# **Key Factors and Best Practices**

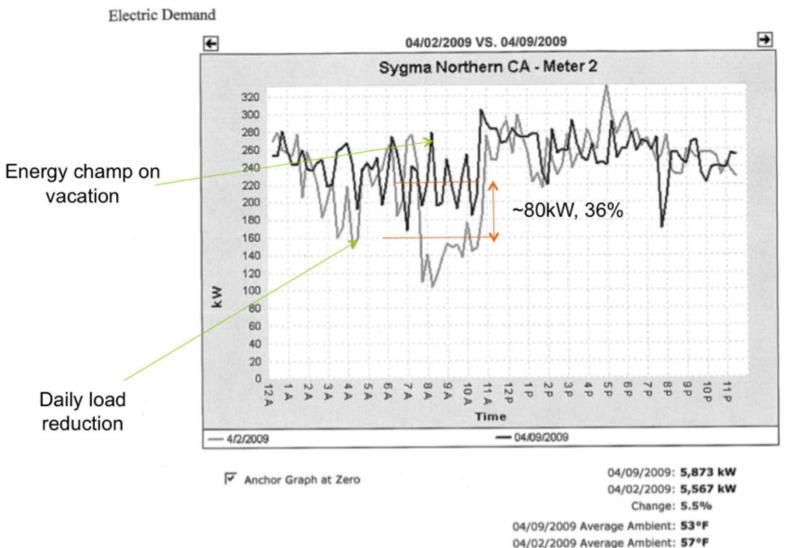
- Initial EUI, extent of efficiency projects, depth of metering, and total years of installation correlated with higher savings
  - EIS rarely if ever implemented as sole strategy
  - All but two participants reported savings could not have been achieved without the EIS
  - Those with less aggressive efficiency projects still saved 5%

#### Best practices

- Installation of submetering, beyond whole-building level
- Load profiling on a regular basis
- Use of automated energy anomaly detection features
- Monitoring peak load and managing demand charges
- With regular usage over time, savings can accrue and deepen




## **Smart Moves**


## Performance Based Maintenance

Lighting

### **Control Override**

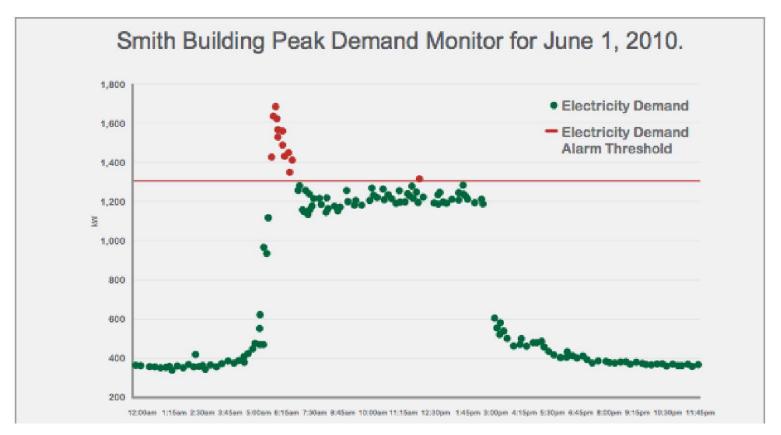
- Exception Report Generated
- Problem Rectified

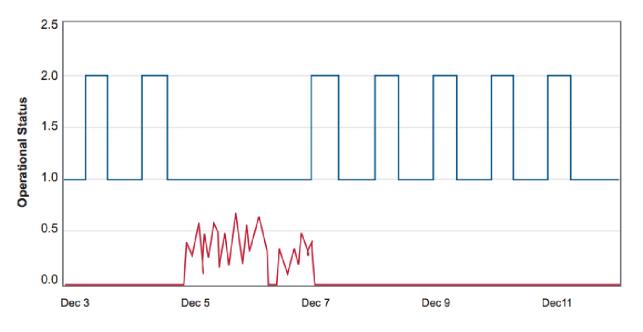




31

Temp Change: -4°F


#### Figure 2. Use dynamic heatmaps to focus your activities on leaders and laggards.


This figure shows a "heat map" of many different facilities, and their energy performance against a YTD average. The color displays energy variance, while the size of the tile represents the total energy spend of the facility. The interactive map lets any user view facilities through a variety of filters, and click on any specific facility for more information.



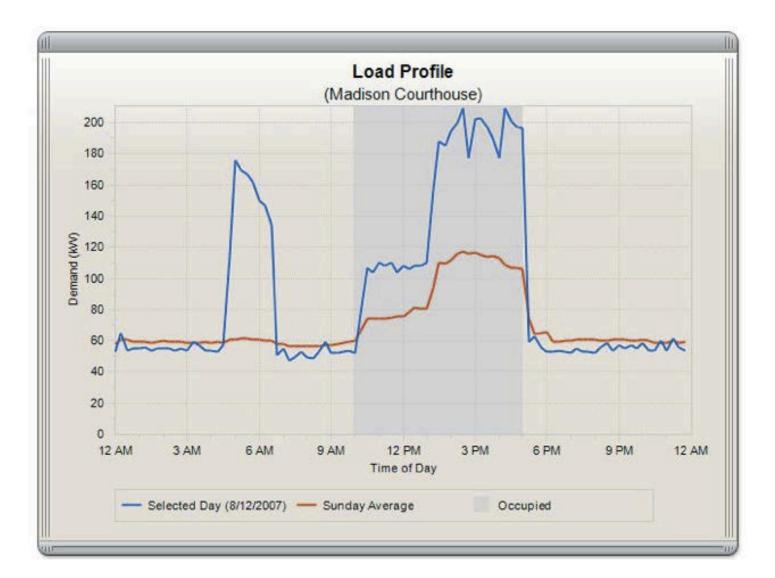
#### Figure 3. Respond rapidly to spikes to keep demand charges low.

This view provides a closer look at the day's energy use profile. When the building's energy use exceeds an established threshold, facility managers will automatically be alerted—and thus have the ability to mitigate runaway energy spikes as they occur.



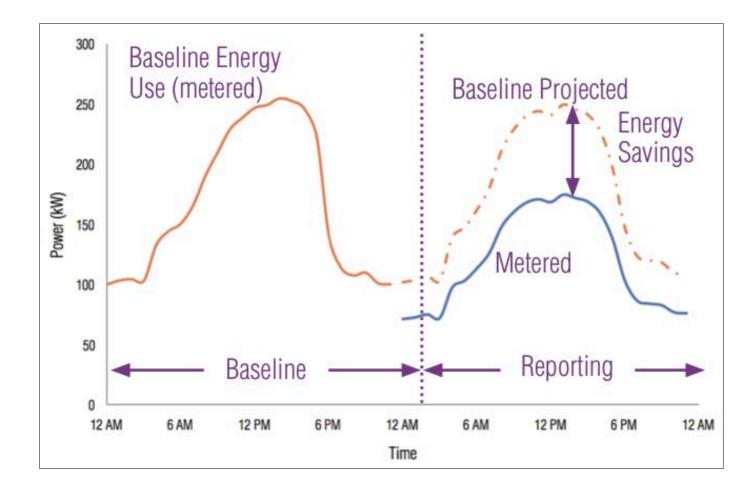


The boiler's red activity line should be flat(off) over the weekends while the building's blue activity line is flat. Automated M&V is beginning to be offered in energy management and information systems


Baselines are automatically created using historic interval meter data (system level or whole-building) and weather data feeds Regression, NN, Bin models most common

User enters the date of ECM implementation, savings automatically calculated




# What is an energy baseline?

Ē

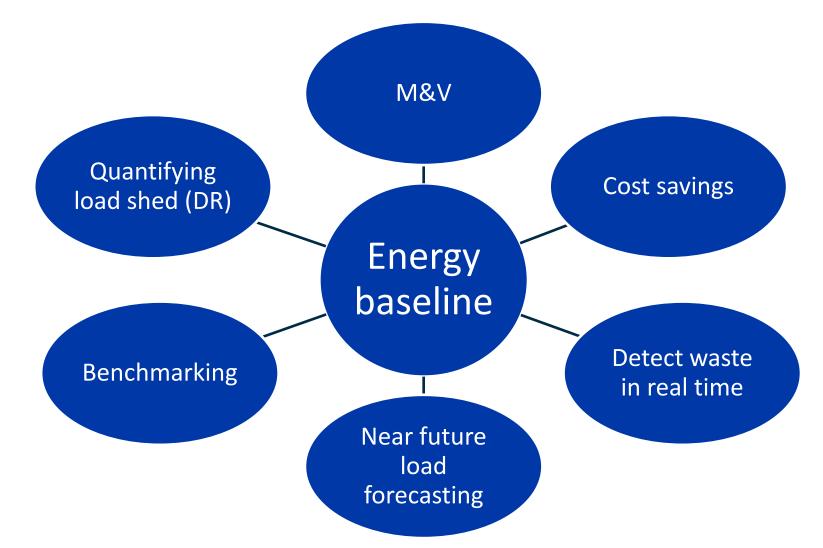




# M&V Use Case



# Automated M&V May Use Interval, Daily, Monthly Data




|                                | KEY                         |  |  |  |  |
|--------------------------------|-----------------------------|--|--|--|--|
| Readings<br>Baseline<br>Actual | Degree days<br>Cooling Load |  |  |  |  |

Example at left from Noesis Energy

While this example uses monthly data; interval data offers the most promise

## The Energy Baselines in EMIS Serve Many Purposes



# Where Can You Access These Resources?

# Visit: eis.lbl.gov Contact: Jessica Granderson JGranderson@lbl.gov

# **Questions?**