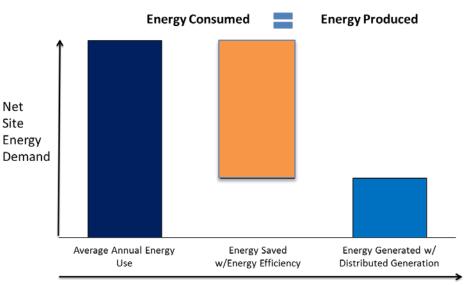
# Zero Net Energy Case Study Buildings by Edward Dean, FAIA

BEST Center -1/12/2017 Can "John" Anbarlilar




Together, Building a Better California



# What is Zero Net Energy (ZNE)?

A highly efficient building that produces as much energy from renewable sources as it consumes over a one year period

 First through high levels of <u>energy efficiency</u>, and then through the addition of clean, on-site <u>renewable power</u> <u>generation</u>, typically solar PV.





# What is Zero Net Energy (ZNE)?

## Many definitions and metrics:

- Site
- Source
- TDV
- •

# Don't get discouraged by metrics and definitions, the concept is the same!



If you want to read about the details:

- Read ZNE Case Study Buildings Vol.1 Introduction <u>Link</u>
- New Buildings Institute (NBI) Database of buildings, tools, communication kit
- Read DOE's "A Common Definition for Zero Energy Buildings" – <u>Link</u>
- International Living Future Institute Net Zero Energy Certification based on Living Buildings Challenge framework

# Why Zero Net Energy (ZNE)?

## **State Policy Framework**

- AB 32 Global Warming Solutions Act (2006)
- CPUC Strategic Plan ZNE New Construction Goals (2008) Long Term Energy Efficiency Strategic Plan (2008)
- CEC Integrated Energy Policy Reports (2007-15)
- Executive Order B-18-12 (2012)
- SB 350 (2015)



## **Big Bold Goals**

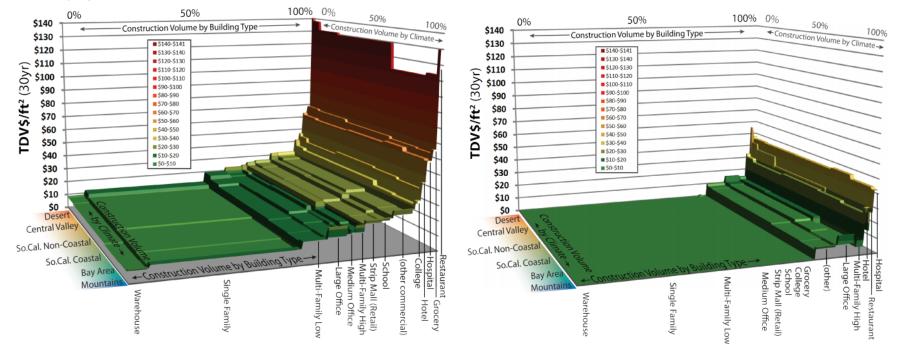
- All new residential construction and all new commercial construction in California will be zero net energy by 2020 and 2030, respectively
- 50% of existing commercial buildings will be retrofit to ZNE by 2030
- All new state buildings and major renovations shall be ZNE (2025)
- 50% of existing state-owned building area by 2025 shall be ZNE



Energy per square foot per year

- Total energy consumed by the building in one year (measured in kBtu) by the total gross floor area of the building.
- Energy Star is a great resource for EUI




# **Technical Feasibility of ZNE in CA**

### without Solar

with Solar

Figure 10 – Statewide Technically Feasible **EUIs without Solar** (TDV\$) distributed by Projected 2020 Construction Volume

Figure 11 – Statewide Technically Feasible **Net-EUIs with Solar** (TDV\$) by Projected 2020 Construction Volume



From "The Technical Feasibility of Zero Net Energy Buildings in California" by ARUP http://www.energydataweb.com/cpucfiles/pdadocs/904/california\_zne\_technical\_feasibility\_report\_final.pdf



## What is Zero Net Energy (ZNE)?

## A Distinction to make:

- ZNE Design
- **ZNE Performance**



## Zero Net Energy Case Study Buildings

### Zero Net Energy Case Study Buildings

S MAR



Written by Edward Dean, FAIA Bernheim + Dean, Inc.

Foreword by Peter Turnbull Principal, Commercial Build ings, Pacific Gas and Electric Company

Note: This is a low-resolution version of this book, designed to be viewed on a computer screen only. It is not suitable for a printed copy.

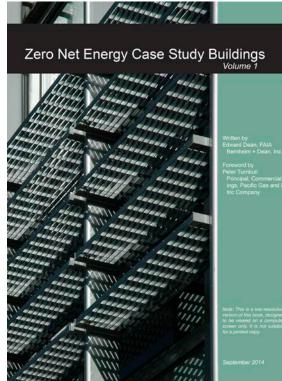
September 2014

### Zero Net Energy Case Study Buildings

Written by Edward Dean, FAIA Bernheim + Dean, Inc.

Foreword by Peter Turnbull Principal, Commercial Buildings, Pacific Gas and Electric Company

Note: This is a low-resolution version of this book, designed to be viewed on a computer screen only. It is not suitable for a printed copy.



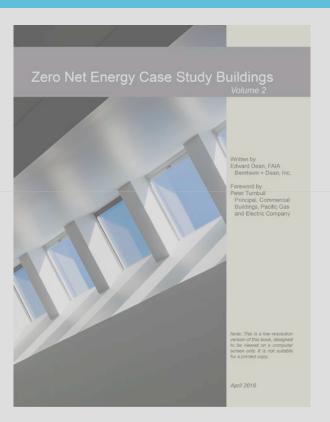

## Zero Net Energy Case Study Buildings by Edward Dean, FAIA

## **Case Studies in Volume 1:**

- Packard Foundation Office Building
- Stevens Library at Sacred Heart Schools
- **IDeAS** Office Building
- Watsonville Water Resources Center
- Science and Engineering Building at UC Merced
- Classroom and Office Building at UC Merced

FREE to download at http://bit.ly/2a6J6v4 **Order** a print copy on Amazon.com, sold at cost






## Zero Net Energy Case Study Buildings by Edward Dean, FAIA

## **Case Studies in Volume 2:**

- DPR Construction Office Building
- IBEW-NECA JATC Training Facility
- Speculative Office Building at 435 Indio Way
- West Berkeley Branch Library
- The Exploratorium Science Museum

**FREE** to download at <u>http://bit.ly/29VOVwx</u> Order a print copy on Amazon.com, sold at cost





## Zero Net Energy Case Study Buildings

|                                                 | Building Type         | Location          | Climate Zone   | Floor Area (sf) |
|-------------------------------------------------|-----------------------|-------------------|----------------|-----------------|
| DPR Construction San<br>Francisco Office        | Office                | San Francisco, CA | CA CZ 3 Marine | 20,020          |
| 435 Indio Way<br>Speculative Office<br>Building | Office                | Sunnyvale, CA     | CA CZ 4 Marine | 31,759          |
| IBEW-NECA JTAC<br>Training Facility             | Classroom /<br>Office | San Leandro, CA   | CA CZ 3 Marine | 45,000          |



## **Emerging storyline:**

- Integrated Design Process (IDP):
  - Among design disciplines & general contractor
- Master Systems Integrator:
  - Coordinate operational controls
  - Monitoring Cx
  - Handholding during the first year of operations
- Life Cycle Cost Assessment
  - Based on performance expectations, maintenance costs, added value of a high performance space

Share.

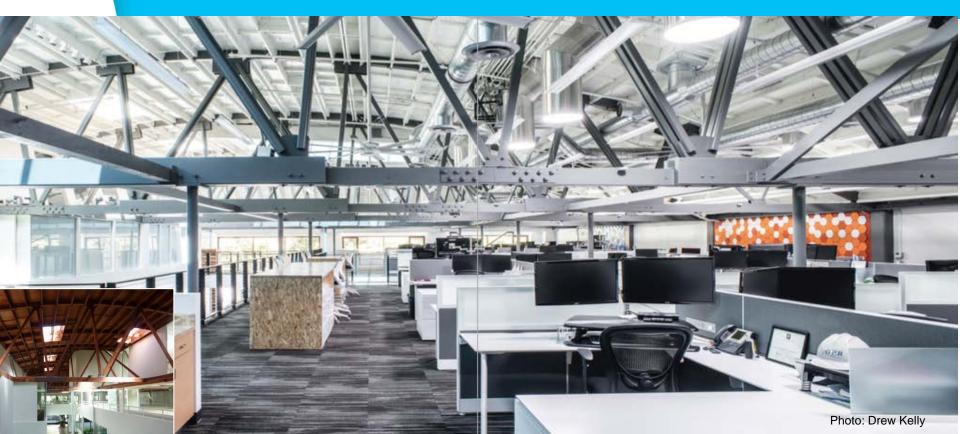
HUM

Photo: Drew Kelly



June 2015)

Building Type: Office Location: San Francisco, CA Gross Floor Area: 24,010 gsf (including tenant space of 4,000 gsf) Occupied: May 2014 Energy Modeling Software: OpenStudio 1.4


Modeled EUI (Site): 25.8 kBtu/sf-year Measured EUI (Site): 22.4 kBtu/sf-year (May 2014 — June 2015) On-Site Renewable Energy System Installed: 118 kW (DC) Solar PV Measured On-Site Energy Production (Electric): 157,000 kWh/year 26.8 kBtu/sf-year (May 2014 — June 2015) Measured Solar Thermal Production: 3,400 kWh/year 0.6 kBtu/sf-year (May 2014 —

#### Design Team

Architect: FME Architecture + Design, San Francisco, CA Structural Engineer: Paradigm, San Francisco, CA Mechanical/Electrical/Plumbing Systems Design and Energy Analyst: Integral Group, Oakland, CA Lighting Design: DPR Construction Commissioning Agent: Integral Group, Oakland, CA Master System Integrator: Honeywell

General Contractor DPR Construction







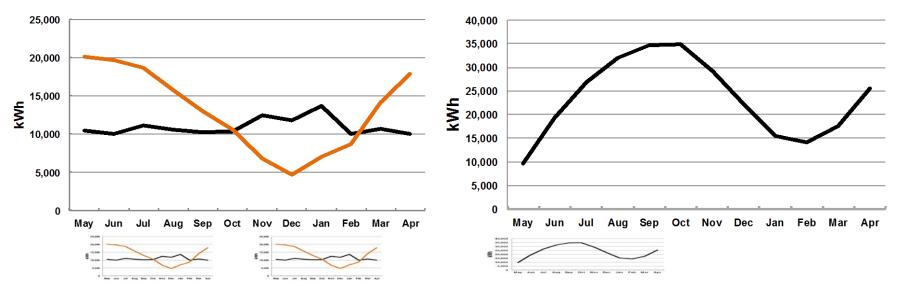
- Building Envelope:
  - Spray foam roof insulation, R-24
- Daylighting:
  - Existing large skylights (electrochromic glass)
  - Tubular daylighting, residential manual skylights
- Natural Ventilation:
  - Landlocked
  - Night flushing might have been helpful



## Heating, Ventilating & Cooling:

- Single air-source heat pump → VRF HVAC
- Large Fans
- 4 Dedicated outside air system (DOAS) units w/ air-to-air
- Solar thermal DHW
- Plug Loads:
  - Plug load management software
  - "Kill Switch"
- Building Control Systems:
  - 11 different control systems integrated.

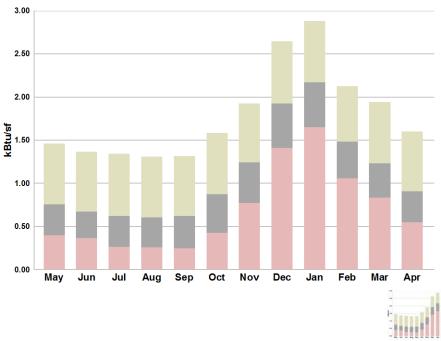



Photo: Ted Van Der Linden

Phote: Ted Van Der Linden

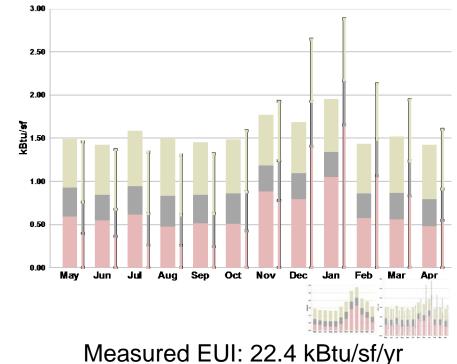


## DPR Construction Office Building May 2014 – April 2015


| Measured Site Energy | kBtu/sf/yr |  |
|----------------------|------------|--|
| Consumption          | 22.4       |  |
| Production           | 26.8       |  |






## DPR Construction Office Building May 2014 – April 2015

## **Modeled Performance**



Modeled EUI: 25.8 kBtu/sf/yr

### **Measured Performance**









Building Type: Office Location: Sunnyvale, CA Gross Floor Area: 31,759 gsf Occupied: May 2014 Energy Modeling Software: EnergyPlus 7.2

#### Modeled EUI (Site):

21.2 kBtu/sf-year Measured EUI (Site): 13.5 kBtu/sf-year (Oct 2014 — Sept 2015)

#### On-Site Renewable Energy System Installed:

113.2 kW (DC) Solar PV

#### Measured On-Site Energy Production:

266,000 kWh/year 28.6 kBtu/sf-year (Oct 2014 — Sept 2015)

#### Measured Solar Thermal Production: 500 kWh/year 0.1 kBtu/sf-year (May 2014 — June 2015)

Client/Developer Sharp Development Company

#### Owner

Huettig & Schromm, Inc.

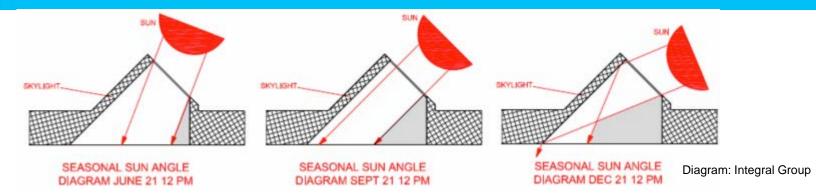
#### Design Team

Architect: RMW Architects, San Jose, CA Structural Engineer: SEI (Structural Engineers Inc) Mechanical/Electrical Engineer: Integral Group, Oakland, CA Lighting Design: Integral Group, Oakland, CA Master System Integrator: Intertie Automation

#### General Contractor

Hillhouse Construction Company




## - Building Envelope:

- 5-5/8" Rigid Insulation, roof insulation
- Double electrochromic glazing
- Daylighting:
  - Unique south-facing skylight w/ light-diffusing film
- Natural Ventilation:
  - Skylights are automatically opened for night flush
  - Operable perimeter windows, high density spaces on the perimeter.







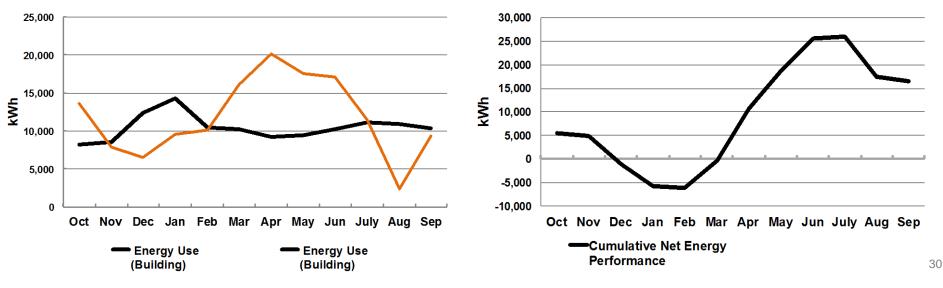






## Heating, Ventilating & Cooling:

- Air Source heat-pumps as a back-up heating cooling to passive systems.
- Large ceiling fans
- Mixed-mode
- Plug Loads:
  - User feedback
- Building Control Systems:
  - Master System Integrator: part of design-build team, sequence of operations.








## 435 Indio Way Speculative Office Building October 2014 – September 2015

| Measured Site Energy | kBtu/sf/yr |  |
|----------------------|------------|--|
| Consumption          | 13.5       |  |
| Production           | 15.2       |  |





## 435 Indio Way Speculative Office Building October 2014 – September 2015

2.00

0.50

0 00

Oct

Nov

Dec

Feb

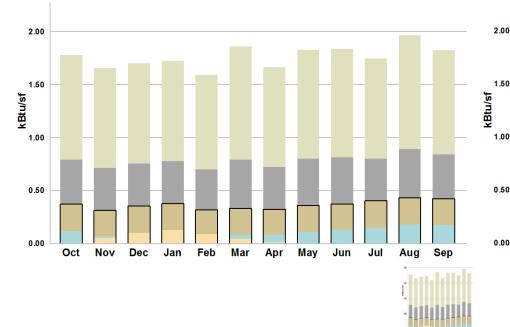
Jan

Mar

Apr

May

Jun


Jul

Aug

Sep

## **Modeled Performance**

### **Measured Performance**



### Modeled EUI: 21.2 kBtu/sf/yr

Measured EUI: 13.5 kBtu/sf/yr







Building Type: Classroom / Office

Location: San Leandro, CA Gross Floor Area: 45,000 gsf Occupied: June 2013 Energy Modeling Software: eQuest 3.63

Modeled EUI (Site): 18.0 kBtu/sf-year Measured EUI (Site): 16.3 kBtu/sf-year (July 2014— June 2015)

#### On-Site Renewable Energy System Installed:

154 kW (DC) Solar PV-flat panel 12 kW (DC) Solar PV-tracking 12 kW (DC) Wind Turbines

#### Measured On-Site Energy Production:

267,500 kWh/year 20.3 kBtu/sf-year Solar Thermal Production: Not measured.

#### **Owner/Client**

IBEW Local 595 / National Electrical Contractors Association— Northern California Chapter

#### Design Team

Architect: FCGA Architects, Dublin, CA Structural Engineer: Belden Inc., Pleasanton, CA Mechanical/Electrical/Plumbing Engineer: Belden Inc, Pleasanton, CA Sustainability Consultant (Energy Modeling): EBS Consultants, San Francisco, CA Landscape Architect: Gates & Associates, San Ramon, CA Master System Integrator: Energy Etc, Union City, CA

#### General Contractor

Novo Construction Company



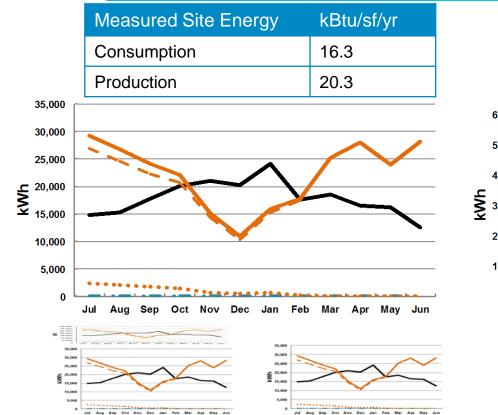
- Building Envelope:
  - Roof insulation, code level, R-19
- Daylighting:
  - Roof monitors, solving solar structural problem
- Natural Ventilation:
  - Computational Fluid Dynamics (CFD)
  - "Free cooling" only not for min. fresh air requirements.

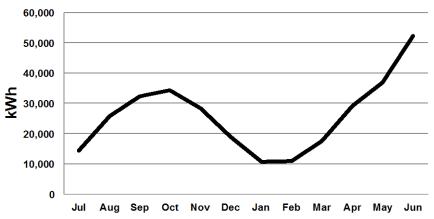






## Heating, Ventilating & Cooling:


- Simultaneous heating & cooling → VRF HVAC
- Central condensing & local fan coils
- Fresh air at local fan coils
- Standalone Solar thermal DHW
- Plug Loads:
  - New computers more cost effective than more PV
- Building Control Systems:
  - Master System Integrator: sequence of operations, controls Cx, data collection and performance monitoring.

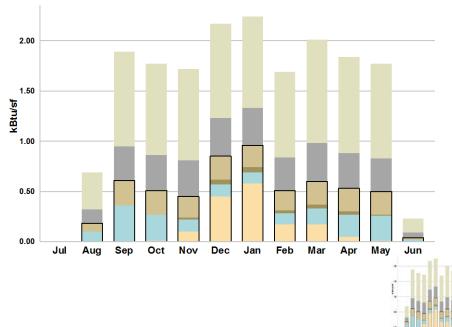




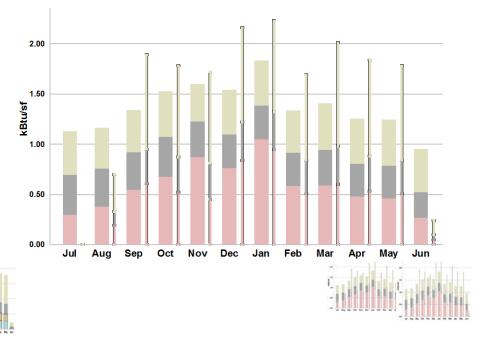



## IBEW-NECA JATC Training Facility July 2014 – June 2015






Cumulative Net Energy Performance



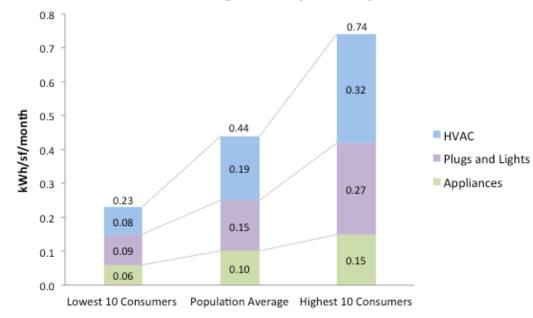

## IBEW-NECA JATC Training Facility July 2014 – June 2015

## **Modeled Performance**



### **Measured Performance**




Modeled EUI: 18.0 kBtu/sf/yr

Measured EUI: 16.5 kBtu/sf/yr



## **Future Opportunities**

## **Occupant Behavior – West Village in Davis, CA**



2014 Average Monthly Consumption



# For Design and Operations:

## www.pge.com/training

### For Design Only:

www.energydesignresources.com

www.energycodeace.com/

Chart by Resource Refocus

# Thank you

Can "John" Anbarlilar mcah@pge.com

Feel free to find me on LinkedIn

